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Abstract 

Soils are complex ecosystems. They play a key role in providing sustainable life on Earth, 

meeting the needs of humans and regulating several environmental processes. The United 

Nation’s 2030 Agenda for Sustainable Development and the related 17 Goals include a 

commitment to the preservation of soil quality. However, the adopted indicators lack the 

measurement of a key nutrient: nitrogen. The aim of this paper is to call for the integration of 

two nitrogen indexes to measure soil quality and to present a worked example of geospatial 

technologies applied to nitrogen monitoring, aiding in farmland management and decision-

making. Due to their inherent time/location precision, remote sensing data can provide 

insight in predicting the impact of agricultural practices and optimise their application. 
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1 Introduction 

Soil quality is “The capacity of a soil to function within ecosystem and land-use boundaries to sustain biological 
productivity, maintain environmental quality, and promote plant and animal health” (Doran & Parkin, 
1996). This definition reflects the complexity of soil ecosystems and destinations of use. The 
latter aspect is especially complex, as changes in land use may be slow, making it difficult to 
detect changes in soil quality before non-reversible damage occurs (Nortcliff, 2002). Hence, it 
is crucial to identify a comprehensive and practical set of indicators to support quality 
assessment. 

An attempt to measure soil quality is represented by SDG-15 Life on Land, namely by 
Indicator 15.3.1, which introduces three key indexes to quantify the loss of biological or 
economic productivity, and complexity of land: Land Cover Meta Language (LCML); Net 
Primary Production (NPP), to measure land productivity; and Soil Organic Carbon (SOC), to 
measure carbon stock (Global Mechanism of the UNCCD, 2016). However, this framework 
overlooks another key indicator: nitrogen. Nitrogen is a crucial nutrient for plants, contributes 
to keeping water bodies and air clean, and relates to severe soil threats, such as: contamination, 
erosion, soil organic matter decline, and biodiversity loss (Else K., Bünemann et al., 2016). 
Moreover, nitrogen is positively correlated to carbon stock. 
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If duly integrated into the analysis, an explicit reference to nitrogen will lead to a more 
complete understanding of the factors that contribute to healthy soil, and therefore to 
appropriate actions and interventions (see Table 1). 

Table 1: EU Soil Framework Directive (European Commission, 2006) soil functions and threats, SDG targets 

and indicators where nitrogen should be integrated. 

 

The aim of this paper is twofold: 

- to underline that, in order to evaluate soil quality, it is advisable to include Soil Total 
Nitrogen concentration (STN) and Nitrogen Nutrition Index (NNI); 

- to present a worked example of remote sensing and geospatial technologies applied 
to nitrogen monitoring, to aid farmland management and decision-making. 

STN is a pivotal indicator of fertility and is closely related to agricultural productivity. 
Therefore, reliable prediction of STN is critical for supporting sustainable agricultural 
development (Lausch et al., 2019). Up to date STN maps are of great interest to identify spatial 
variation and control factors, which can help maintain soil safety and provide a reference for 
climate change management. NNI is a plant-based diagnostic method used to determine the 
crop nitrogen distribution and status, to optimize its management in farming systems. 
Remote sensing allows for open, precise, real-time, and localised data to be obtained, about 
how nitrogen is organized in soils or used by plants. Unlike traditional in-situ methodologies, 
it can show the impact of agricultural practices on large areas. Furthermore, when merged with 
other pieces of information, remote sensing supports the identification of the most suitable 
practices for each given soil. A seemingly passive monitoring tool subsequently turns into a 
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proactive planning methodology, supporting farmers to implement good practices strictly 
connected with the achievement of SDGs. For example, geospatial data concerning the loss 
of nitrogen in the atmosphere due to tillage interventions may suggest that crop rotation stores 
more nitrogen in the soil and increases its quality. 

The outcome of our work is a dynamic, real-time nitrogen map conceived to help farmers to 
understand where and when to use fertilizers, usually containing nitrogen, and to promote 
sustainable soil management practices, such as crop rotation. 

2 Materials and Methods 

We considered the Sentinel-1 (S1) VH (vertical transmitted, horizontal received) and VV 
(vertical transmitted, vertical received) polarization modes, and computed the ratio VV/VH, 
which is less sensitive to vegetation cover (Vreugdenhil et al., 2021). SAR images are 
instrumental for mapping soil properties: Yang et al. (2019) demonstrated their correlation 
with in-situ data and possible errors in the sensitivity of backscatter intensity, changes in soil 
moisture, and soil surface conditions. They found a significant correlation between SAR 
backscatters and various soil properties (including SOC and STN) during the growing season 
and demonstrated that multi-temporal SAR data are useful for predicting soil chemical 
properties because they can capture soil properties. Also factoring in Maynard et al. (2017), we 
replicated their methodologies and tested them in our case study. Firstly, we examined the 
temporal variation of the canopy of Sentinel-2 (S2) vegetation and the soil-to-vegetation ratio 
using level-1 Single Look Complex (SLC) data from S1, we then built correlation models with 
in-situ data to predict soil properties. A total of 28 S1 and 22 S2 images were acquired during 
the soils’ growing season. 

Two sections of land were studied in an agricultural area of Po Valley (Northern Italy). Both 
study sites had crops in rotation (wheat/protein pea), undergoing minimal processing for five 
years: one section subject to Conservation Agriculture (CA), the other an Ecological Focus 
Area (EFA). Each area spanned three hectares. A comparison was therefore enabled for the 
two areas in the same environmental and cultural conditions but with different processing 
approaches. 

Within the study area, we sampled thirty-six surveys of SOC and STN data over three years, 
including land use data and various soil texture data (0-10 cm - 10-30 cm). We then integrated 
the ground data with the SoilGrid-250 maps and LUCAS datasets, obtaining six additional 
samples useful for SOC (note that LUCAS does not contain information to validate NNI). 

We pre-processed the SAR data utilising the ESA open-source Sentinel Application Platform 
(SNAP) toolbox, as depicted in the workflow in Figure-1 (Zhou et al., 2020). Finally, the S1 
data were converted to dB scale with a backscatter coefficient with a resolution of 10 m. As 
for optical data, we downloaded L2 images, masking clouds and shadows and homologating 
the grid to the S1-data using a Digital Elevation Model at 10 m as a trace. We then calculated 
the backscatter coefficients of the VH and VV polarizations from the S1-images. 

From the S2 MultiSpectral Instrument (MSI), we extracted the B2, B3, B4, B8A, B11, and B12 
bands and computed the Normalized Difference Vegetation Index (NDVI), the Modified 
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Chlorophyll Absorption in Reflectance Index (MCARI), the Enhanced Vegetation Index 
(EVI), and the Soil Adjusted Total Vegetation Index (SATVI); to be used as SOC’s predictors 
(Gholizadeh et al., 2018). 

Following Zhou (2020), we processed the S1/S2 data using machine learning models to predict 
and model nitrogen maps. We built three models using S1, S2, S1/S2 images across Boosted 
Regression Trees (BRT) and Support Vector Machine (SVM) with three validation criteria: 
Root Mean Square Error (RMSE), coefficient of determination (R2), and Mean Absolute Error 
(MAE). 

 

Figure 1: Summary of input data and related pre-processing workflow 

The results in Table 2 confirmed the in-situ sampling data: crop rotation, applied on both 
areas, increases the SOC and STN levels, as foreseen by the literature. Both the EFA and the 
CA areas increased their nitrogen and carbon stocks over the three years. However, due to 
higher temporal sampling and a shorter review time, the satellite data highlight an additional 
dynamic, undetected by in-situ samples. Between one crop rotation and the next, the satellite 
can show the actual nitrogen loss, mainly due to processing, washout, and wind. For example, 
even if the EFA area did not undergo tillage in 2018, it suffered a substantial loss of nitrogen, 
unobserved by in-situ samplings, only highlighting the overall nitrogen and carbon balance, 
but not helping farmers to understand where to improve or identify any cause. Instead, the 
satellite shows what happens in a specific time frame and allows, using machine learning, to 
correct errors based on data and problems faced in the past. For example, in the EFA case, 
we could report to the farmer that the sowing process on sod was inaccurate in 2018; in 
addition, we could signal to postpone sowing for a week, due to very wet soil, resulting in 
abrupt losses due to ground runoff and wind. In the CA area, we could warn against the use 
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of compost in 2018, postponing it to 2019, when it was needed, resulting in a positive balance 
of nitrogen in 2020. 

Maximum prediction accuracy was achieved for S1/S2 models, suggesting that multi-source 
approaches may be preferable for monitoring soil properties. Notably, SVM gave better results 
for CA, whereas BRT did for EFA. 

Table 2: Model outputs for three years on the two case study areas, rotating wheat (grey) and protein 

pea (white) culture. The best correlations of satellite data with in-situ data are in green. The validation 

data in the two rightmost columns were obtained from the LUCAS database and in-situ data. 

 

 
Figure 2: Annual graphical representation of STN-SOC data. The complete charts are available by 

[name deleted to maintain the integrity of the review process]. 
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To produce NNI maps, we first pre-processed the satellite data to obtain biophysical variables 
such as: Leaf Area Index (LAI), Fraction of Vegetation Cover (FVC), and Chlorophyll Content 
of the Canopy (CCC). We used the biophysical processor inside SNAP to retrieve the variables: 
LAI_S2, CAB_S2, CCC_S2, which include all the green parts of the Green Area Index (GAI) 
plant. We assumed a linear relationship from the biophysical indices with the Actual quantity 
of Vegetable Nitrogen (PNUa) and the specific BioMass above ground (BM) to derive the 
Critical absorption of Vegetable Nitrogen (PNUc), according to a specific dilution curve of 
the crop. The methodology consists of calculating PNUa directly from CCC using linear 
relationships and then obtaining PNUc by estimating BM from the GAI data. NNI can then 
be calculated from the PNUa and PNUc estimations. We finally calculated the soil quality at 
the end of each phenological cycle as the sum of the total nitrogen in the crop (NNI) and in 
the soil (STN). 

 

Figure 3: The graphs show an estimated “nitrogen cycle” for the CA (left) and EFA (right) areas over the 

three years of satellite monitoring. The cycle takes into account the nitrogen fixed by the crops, the 

nitrogen volatilization and the nitrogen in the soil. 

In general, both fields were composed of very fertile clayey soil (67%), indicated in Table 1 by 
the high content of SOC (6-8%). Figure 3 highlights the importance of crop rotation, which 
helped to strengthen the biological, physical, and chemical components in both soils. Figures 
2 and 3 suggest that no-tillage (EFA) may ensure better soil conservation than reduced tillage 
(CA), but the yield, vigour, and nitrogen supply of both practices are similar. The biological 
components are responsible for various processes such as: atmospheric nitrogen fixation, 
disintegration and degradation of the soil and its organic components, increase of organic 
substance, and simultaneously greater vigour to the crops. In conclusion, with soils richer in 
SOC and nitrogen, the quality of “fertile” soil improved by 6% and 4% respectively for the 
EFA and CA areas over the three-years period. 

3 Conclusion 

Although limited to the presented worked example, the nitrogen map promotes a more 
accurate definition of soil quality, demonstrating the relevance of nitrogen, proved to increase 
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the soil capacity to stock carbon. The study shows that high levels of SOC and nitrogen 
increase the fertility of soils, improve the production, and reduce the need for fertilizers. 
Moreover, by measuring the most relevant physical, chemical, and biological soil indicators, 
including nitrogen, the map offers an effective management tool for farmers, supporting them 
in implementing more sustainable practices. 
Remote sensing proved to be a valuable ally in monitoring the entire phenological year for 
different farmlands. Satellite datasets allow access to historical data on a global scale every 6-
days, and with a resolution precise enough (10 m) for monitoring the state of the soil. These 
datasets not only complement or enhance national and regional official data sources, especially 
when the latter are missing or incomplete, but also validate them due to satellites’ time/location 
accuracy. The great advantage is having access to precise, historical, and locally calibrated data 
on a frequent schedule, which enables predicting the soil attitude to a specific treatment, 
supporting decision-making and management tools for farmers, such as the nitrogen map. In 
the future, we plan to present this tool to governments, to support countries in meeting their 
commitments in monitoring and reporting key soil quality indicators. 
As shown in Table 1, several SDGs’ targets and indicators are heavily interlinked with nitrogen 
functions, therefore should be integrated with its indicators to obtain a comprehensive 
overview of SOC stocks processes. By including one or more nitrogen indicators, the 
framework for the implementation of soil-related SDGs would better address the complexity 
of the soil ecosystem and its dynamics, facilitating the achievement and consolidation of 
Agenda 2030 both for farmers and policy makers. The former would be supported in applying 
sustainable practices; the latter would create more localised policies based on calibrated 
thresholds and indicators of soil quality. 
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